torchsparse.nn.functional#
- relu(input: SparseTensor, inplace: bool = True) SparseTensor [source]#
- leaky_relu(input: SparseTensor, negative_slope: float = 0.1, inplace: bool = True) SparseTensor [source]#
- build_kernel_map(_coords: Tensor, kernel_size: int | Tuple[int, ...] = 2, stride: int | Tuple[int, ...] = 2, tensor_stride: int | Tuple[int, ...] = 1, mode='hashmap') Tensor [source]#
- conv3d(input: SparseTensor, weight: Tensor, kernel_size: int | List[int] | Tuple[int, ...], bias: Tensor | None = None, stride: int | List[int] | Tuple[int, ...] = 1, dilation: int | Tuple[int, ...] = 1, transposed: bool = False, epsilon: float = 0.0, mm_thresh: int = 0, kmap_mode: str = 'hashmap') SparseTensor [source]#
- spcrop(input: SparseTensor, coords_min: Tuple[int, ...] | None = None, coords_max: Tuple[int, ...] | None = None) SparseTensor [source]#
- spdownsample(coords: Tensor, stride: int | Tuple[int, ...] = 2, kernel_size: int | Tuple[int, ...] = 2, tensor_stride: int | Tuple[int, ...] = 1) Tensor [source]#
- global_avg_pool(inputs: SparseTensor) Tensor [source]#
- global_max_pool(inputs: SparseTensor) Tensor [source]#